

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Mechanics (WME02) Paper 01

Q	Scheme	Marks	Notes
1(a)	Expression for total KE before collision	M1	Dimensionally correct. Condone confusion between before and after for <i>A</i> . Allow if vectors seen in the working but the modulus is used correctly. The two parts must be added together Allow confusion of 2 kg and 3 kg
	$\frac{1}{2} \times 2 \times 5^2 + \frac{1}{2} \times 3 \times (3^2 + (-1)^2)$	A1	correct unsimplified expression
	=40 (J)	A1	cao
		(3)	
1(b)	$2((3\mathbf{i}+2\mathbf{j})-5\mathbf{j})$	M1	change in momentum of <i>A</i> , must be a difference but allow subtraction in either order Must be using the correct mass, 2 kg
	$= (6\mathbf{i} - 6\mathbf{j}) \text{ (N s)}$	A1	Cao The final answer should be in terms of i and j because this is asked for in the question. Accept 2(3 i – 3 j) ISW
		(2)	
1(c)	impulse-momentum equation for <i>B</i>	M1	must use negative of their answer to (b) and the initial velocity of <i>B</i> Must be using the correct mass, 3 kg or CLM with correct terms (allow slip) and plus signs
	$3(\mathbf{v}_B - (3\mathbf{i} - \mathbf{j})) = (-6\mathbf{i} + 6\mathbf{j})$ or $2 \times 5\mathbf{j} + 3(3\mathbf{i} - \mathbf{j}) = 2(3\mathbf{i} + 2\mathbf{j}) + 3\mathbf{v}_B$	A1ft	correct unsimplified equation ft on their impulse from (b)
	$\mathbf{v}_B = (\mathbf{i} + \mathbf{j}) \text{ (m s}^{-1})$	A1	Cao Accept column vector ISW
		(3)	
		(8)	

Q	Scheme	Marks	Notes
2(a)	$\frac{3}{4}t = \sqrt{2t+1}$	M1	Equate the two expressions Allow M1 only if they verify that it works for $k = 4$
	$9t^2 - 32t - 16 = 0$	A1	Correct 3 term quadratic In t or in k. Any equivalent form without the root
	$t = 4 \text{ or } -\frac{4}{9}, \text{ so } k = 4 \ k \geqslant 0 \ *$	A1*	Given answer for k correctly explained The Q asks for an explanation, so they must explain why they reject the negative root.
		(3)	
2 (b)	Differentiate v to obtain a	M1	power decreasing by 1, condone incorrect chain rule
	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{1}{2}(2t+1)^{-\frac{1}{2}} \times 2$	A1	Correct derivative (any equivalent form)
	When $t = 1.5$, $a = 0.5$ (m s ⁻²)	A1	cao
		SC	Allow M1A1A0 for correct differentiation seen as part of a vector approach
		(3)	
2(c)	$x = \int \sqrt{2t + 1} \mathrm{d}t$	M1	Attempt to integrate: power increasing by 1 Must see working – the question excludes calculators for this step
	$= \frac{2}{3}(2t+1)^{\frac{3}{2}} \times \frac{1}{2} (+C)$	A1	Correct indefinite integral
	Correct use of correct limits	M1	Use of $t = 0$, $x = 0$ and $t = 4$ as limits in a definite integral or to obtain the constant of integration and hence x when $t = 4$ $\left(C = -\frac{1}{3}\right)$ "Correct use" means (value when 4 substituted) – (value when 0 substituted)
	$x = \frac{26}{3}$	A1	Accept 8.7 or better
	$\int \frac{3}{4}t dt$	M1	Attempt to integrate: power increasing by 1 Must see working – the question excludes calculators for this step NB It is correct to use <i>suvat</i> in place of this second interval, but if they do then M1 includes use of the correct initial speed (3 ms ⁻¹)
	$= \left[\frac{3}{8}t^2\right]_4^8$	A1	Correct definite integral. Accept $\frac{3 \times 64}{8} - \frac{3 \times 16}{8}$ or equivalent unsimplified expression
	Total = $\frac{80}{3}$ (m) (=18 (m))	A1	Accept 27 or better $(26.\dot{6})$
		SC	Correct integration seen as part of a vector approach can score M1A1M0A0M1A0A0
		(7)	
		(13)	

Q		Scheme		Marks	Notes
3(a)	Large disc	Small disc	Template		correct area ratios and distances seen
	πR^2	πr^2	$\pi R^2 - \pi r^2$	B1	or implied
	0	R-r	$\pm kr$		Allow $+ kr$ or $-kr$
	Moments abou	ut axis through	X	M1	Or moments about a parallel axis. Need all terms but condone sign errors Do not need to see the zero term Dimensionally consistent Could be part of a vector equation
	Moments about diameter through	$(R-r) = (\pi)^{2} \times (R-r) = (\pi)^{2}$ If the left-hand $(R-r) = \pi (R^{2})^{2}$	end of the ves:	A1	Correct unsimplified equation Do not need to see the zero term Must be using $-kr$ (unless they have changed the sign on the left-hand side)
	1,				Obtain given answer from correct
	$r = \frac{k}{1 - k} R *$			A1*	working e.g. via $\frac{r}{R+r} = k$
					If they use \overline{x} in place of $\pm kr$ and never substitute $\pm kr$ they can score B0M1A0A0
				(4)	
3 (b)	$0 < \frac{k}{1 - k} R < R$?		M1	use of correct inequality
	(0 <) k < (1 - k)	$) => (0 <) k < \frac{1}{2}$		A1	Correct only Only need the right-hand value. A0 with an incorrect left hand value
				(2)	
3(c)	$k = \frac{4}{9} \Longrightarrow r = \frac{4}{5}$	$\frac{1}{5}R$		B1	Seen or implied (this mark could be implied by the correct expression for $\tan \alpha$ in terms of k)
	$\tan \alpha = \frac{R}{kr} \left(= \frac{1-k}{k^2} \right)$	$=\frac{R}{\frac{4}{9}\times\frac{4}{5}R}=\frac{45}{16}$		M1	Correct use of trig in a correct triangle Available for finding 90 - α
	$\alpha = 70^{\circ}$			A1	or better (70.426) Accept 109.6, 250.4 and 289.6
				(3)	

Q	Scheme	Marks	Notes
3(d)	Moments about an axis through P	M1	dimensionally consistent, condone sign errors and missing g throughout The equation should be of the form $M_1gR = Mg$ x a distance(in r or R) Moments about any other axis requires use of the forces acting at P
	$M(P), M_1 g R = Mg \times \frac{4}{9} r$ $Or \ M_1 g R = Mg \times \frac{16}{45} R$	A1	correct unsimplified equation in r and / or R
	$M_1 = \frac{16}{45}M$	A1	Accept 0.36 M or better
		(3)	
		(12)	

Q	Scheme	Marks	Notes
4 (a)	$F = \frac{1}{7} \times mg \cos \alpha \left(= \frac{1}{7} \times mg \times \frac{4}{5} \right)$	M1	condone sin/cos confusion
	$=\frac{4mg}{35}*$	A1*	obtain given answer from correct working Correct trig value must be seen as it is a given answer – could be against the Q
		(2)	
4(b)	Energy equation: PE gain + WD against Fr = KE lost or equivalent	M1	NB: The question tells them to use work-energy. Need all terms, dimensionally correct but condone sign errors. Condone sine / cosine confusion
	$\frac{4mgd}{35} + mgd \sin \alpha = \frac{1}{2}m \times 10ag$ Or $\frac{4mgd}{35} + mgd \times \frac{3}{5} = \frac{1}{2}m \times 10ag$	A1 A1	unsimplified equation with at most one error correct unsimplified equation
	d (= AB) = 7a	A1	cao
	u (III) ,u	(4)	
4(c)	Energy equation	M1	NB: The question tells them to use work-energy. Need all terms, dimensionally correct but condone sign errors
	$\frac{4mg}{35} \times 14a = \frac{1}{2}m \times 10ag - \frac{1}{2}mV^2$	1.10	unsimplified equation with at most one
		A1ft	error, ft on their AB
	or $\frac{4mg}{35} \times 7a = mg \times 7a \times \frac{3}{5} - \frac{1}{2}mV^2$	Alft Alft	error, ft on their AB correct unsimplified equation
			error, ft on their AB
	or $\frac{4mg}{35} \times 7a = mg \times 7a \times \frac{3}{5} - \frac{1}{2}mV^2$		error, ft on their <i>AB</i> correct unsimplified equation Allow A1A1 if they have substitued
	or $\frac{4mg}{35} \times 7a = mg \times 7a \times \frac{3}{5} - \frac{1}{2}mV^{2}$ or $\frac{4mg}{35} \times d = mg \times d \times \frac{3}{5} - \frac{1}{2}mV^{2}$	A1ft	error, ft on their AB correct unsimplified equation Allow A1A1 if they have substitued for g accept $2.6\sqrt{ag}$, $\sqrt{6.8ag}$ or better.

Q	Scheme	Marks	Notes
5(a)	$ \begin{array}{cccc} & & & & & & \\ & & & & & \\ P(m) & & & & & \\ v & & & & & \\ & & & & & \\ & & & & & \\ & & & & $		
	Use of CLM (or equal and opposite impulses):	M1	correct no. of terms, dim correct, condone sign errors
	mu = -mv + 2mw	A1	Or equivalent
	Use of NEL:	M1	correct way round, condone sign errors
	eu = v + w	A1	Or equivalent
	Solve for <i>v</i>	DM1	Dependent on both preceding M marks
	$v = \frac{u(2e-1)}{3}$	A1	Or equivalent
	v consistently in the wrong direction gives $v = \frac{u(1-2e)}{3}$		Mark as a misread and allow M1A0M1A0M1A1, but full marks if they later take account of the change in direction to give the correct final answer
	If the direction of <i>v</i> is correct in one equation and incorrect in the other then mark as seen	(6)	
5(b)	NEL at the wall: $x = \frac{1}{3}w$	(6) B1	Allow + / -: they might be working with velocities
	$w = \frac{u(e+1)}{3}$	B1	Or equivalent expression for w
	$\frac{1}{3} \times \frac{u(e+1)}{3} > \frac{u(2e-1)}{3}$	M1	use of their $x > their v$
	$e < \frac{4}{5}$	A1	cao
	$\frac{1}{2} < e < \frac{4}{5}$	A1	cao
		(5)	
		(11)	

Q	Scheme	Marks	Notes
6(a)	$S \stackrel{B}{\longleftarrow} B$ $A \stackrel{R}{\longrightarrow} F$		
	$F = \frac{1}{3}R$	B1	For a correct statement seen anywhere e.g. on a diagram
either	Horizontal forces: $S = F\left(=\frac{1}{3}mg\right)$	B1	
	Equation for M(A)	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$S \times 2a \cos \alpha = mga \sin \alpha$	A1	Correct unsimplified
or	R = mg	B1	
	Equation for $M(B)$	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$F \times 2a\cos\alpha + mga\sin\alpha = R \times 2a\sin\alpha$	A1	Correct unsimplified
or	$S = F\left(=\frac{1}{3}mg\right)$	B1	
	Equation for $M(G)$	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$Fa\cos\alpha + Sa\cos\alpha = mga\sin\alpha$	A1	Correct unsimplified
SC	$S = F\left(=\frac{1}{3}mg\right)$ or $R = mg$ and no moments equation	B1	And no further marks
	Solve for $\tan \alpha$	M1	
	$\tan \alpha = \frac{2}{3} *$	A1*	Obtain given answer from correct working
SC	A candidate who never uses <i>g</i> can score B1B0M1A0M1A0		
		(6)	

Q	Scheme	Marks	Notes
6(b)	$ \begin{array}{c} R \\ Mg \end{array} $ $ F \stackrel{A}{\longleftarrow} kmg$		
either	A good starting point for marking part (b) is to	M1	number of terms in the moments equation
either	Use of $R = mg$ and $M(A)$	IVI I	
	$N = S = \frac{1}{3}mg$	A1	Correct only
	Resolve horizontally: $kmg = \frac{1}{3}R + N$	DM1	Dependent on the moments equation
	and solve for <i>k</i>		need correct terms, condone sign errors
	$k = \frac{2}{3}$	A1	correct equation
		(4)	
or	M(A) and	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$mga\sin\alpha = N \times 2a\cos\alpha$	A1	Correct unsimplified equation
	Resolve horizontally: $kmg = \frac{1}{3}R + N$ and use $R = mg$ and $\tan \alpha = \frac{2}{3}$ to solve for k	DM1	Dependent on the moments equation need correct terms, condone sign errors OR could use a second moments equation
	$k = \frac{2}{3}$	A1	Correct only
or	M(B),	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$mga \sin \alpha + kmg \times 2a \cos \alpha$ $= R \times 2a \sin \alpha + \frac{1}{3} R \times 2a \cos \alpha$	A1	
	Use of $R = mg$ and $\tan \alpha = \frac{2}{3}$ to solve for k	DM1	Dependent on the moments equation OR could use a second moments equation
	$k = \frac{2}{3}$	A1	Correct only
		(4)	
or	M(G),	M1	need correct terms, condone sign errors and sin/cos confusion
	$Na\cos\alpha + kmga\cos\alpha = Ra\sin\alpha + Fa\cos\alpha$	A1	Correct unsimplified equation
	Resolve horizontally: $kmg = \frac{1}{3}R + N$ and use $R = mg$ and $\tan \alpha = \frac{2}{3}$ to solve for k	DM1	Dependent on the moments equation need correct terms, condone sign errors OR could use a second moments equation
	$k = \frac{2}{3}$	A1	Correct only
		(10)	

Q	Scheme	Marks	Notes
7(a)	Horizontal distance	M1	equation with correct terms, condone sign errors
	2ut = 80	A1	correct equation
	Vertical distance or vertical speed	M1	equation with correct terms, condone sign errors
	$0 = ut - \frac{1}{2}gt^2$	A1	correct equation in t Alternatives include $-u = u - gt$ or $0 = u - g \frac{1}{2}t$
	Solve for u $\left(\text{e.g. } u \times \frac{80}{2u} = \frac{1}{2} g \frac{80^2}{4u^2}\right)$	DM1	Dependent on the two previous M marks
	u = 14*	A1*	obtain given answer correctly
	·		y, then mark as a misread. M1A0M1A0M1A1
	Fortuitously, they do obtain the given answer		
		(6)	
7 (b)	$v^2 = (7\sqrt{17})^2 - 28^2$	M1	form an equation in <i>v</i> only (<i>v</i> is vertical component)
	=> v = 7 (or -7)	A1	second value not needed
	Use of <i>suvat</i> to find the required time Check their logic. Have they found the time speed is $< 7\sqrt{17}$ or the time the speed is $> 7\sqrt{17}$?	DM1	Dependent on the first M mark. Complete method to obtain the required time. condone sign errors
	is $ > 7\sqrt{17} ? $ $7 = 14 - gt \implies t = \frac{5}{7} = 0.71 $	A1	Obtain a relevant value of t
	Total time = $2 \times \frac{5}{7} = 1.4$ or 1.43 (s)	A1	For the required time to 2 sf or 3 sf A0 for $\frac{10}{7}$; follows the use of an approximate value for g
	The misread from (a) will give $v = \pm \sqrt{637} = \pm 7\sqrt{13}$ (±25.2), critical value of time $t = 0.282$, required time 0.56 (s)	(5)	No further penalty for the misread if the penalty is already applied in (a)

7(b) alt	$\frac{1}{2}m(28^2+14^2)-\frac{1}{2}m(7\sqrt{17})^2=mgh$	M1	form an equation in h only
	=>h=7.5	A1	Correct only
	Use of <i>suvat</i> to find the required time Check their logic. Have they found the time speed is $< 7\sqrt{17}$ or the time the speed is $> 7\sqrt{17}$?	DM1	Dependent on the first M mark. Complete method to obtain the required time, condone sign errors
	$7.5 = 14t - \frac{1}{2} \times 9.8t^2$ $\Rightarrow t = \frac{5}{7}, t = \frac{15}{7}$	A1	Obtain at least one relevant value for t
	20 (15 5)		For the required time to 2 sf or 3 sf
	Total time = $\frac{20}{7} - \left(\frac{15}{7} - \frac{5}{7}\right) = 1.4 \text{ or } 1.43(s)$	A1	A0 for $\frac{10}{7}$; follows the use of an approximate
			value for g
	The misread from (a) will give the same value for h (7.5), $t = 5.43$ and $t = 0.28$, so required time 0.56 (s)		
		(5)	
7b alt	Use $7\sqrt{17}$ to form an equation in t only	M1	
	$=>7\sqrt{17}=\sqrt{(14-gt)^2+28^2}$	A1	Or equivalent
	Solve to find the required time Check their logic. Have they found the time speed is $< 7\sqrt{17}$ or the time the speed is $> 7\sqrt{17}$?	DM1	Dependent on the first M mark. Complete method to obtain the required time, condone sign errors
	$147 = 2gt - g^2t^2 \implies t = \frac{5}{7}, t = \frac{15}{7}$	A1	Obtain at least one relevant value for t
	Total time = $\frac{20}{7} - \left(\frac{15}{7} - \frac{5}{7}\right) = 1.4 \text{ or } 1.43(s)$	A1	For the required time to 2 sf or 3 sf A0 for $\frac{10}{7}$; follows the use of an approximate
			value for g
		(5)	
		(11)	